Водород давно и широко используется в химической и пищевой промышленности

Наука и жизньНаука

Где взять водород?

Кирилл Дегтярёв, Московский государственный университет им. М. В. Ломоносова

Электролизная станция с ресиверами хранения водорода. Березовская ГРЭС. Красноярский край (2014 год). Фото Валерия Акулича/Фотобанк Лори

Водород давно и довольно широко используется в химической и пищевой промышленности, в нефтепереработке. Но как об энергоресурсе о водороде заговорили сравнительно недавно. Первые экспериментальные проекты использования этого газа в качестве топлива для транспорта появились в начале текущего века. На протяжении двух десятилетий «водородный тренд» постепенно набирал силу. В широкое употребление вошло понятие «водородная экономика». Планы её развития, заявленные в ряде стран, включая Россию, подразумевают многократное увеличение производства и потребления водорода в энергетических целях — в качестве топлива, для производства электрической и тепловой энергии.

Предполагается, что водород наряду с возобновляемыми источниками энергии вытеснит «традиционные» углеводородные энергоносители. Водород активно позиционируют в качестве экологически безопасного «углеродно-нейтрального» источника энергии, а планируемый рост его производства и использования — как движение по пути декарбонизации мировой экономики и снижения потребления ресурсов. Под декарбонизацией понимается прекращение выбросов углерода и его соединений, прежде всего углекислого газа CO2, антропогенную эмиссию которого рассматривают в качестве одной из ключевых причин глобального потепления. Но с возможностью перевода энергетики на водород не так всё просто.

Лёгкий, горючий и очень теплотворный

Наверное, каждому из школьного курса химии известно, что водород — первый химический элемент таблицы Менделеева. Есть ряд изотопов водорода, но основной из них — протий (1H), на который приходится примерно 99,99% атомов водорода на Земле и во Вселенной. Ядро протия состоит всего из одного протона. Как следствие, это самый лёгкий химический элемент. Для сравнения, при нормальном атмосферном давлении 1 м3 воздуха имеет массу около 1,2 кг, 1 мприродного газа (метана CH4) — 700 г, а 1 м3 газообразного водорода (химическая формула H2) — всего 90 г. То есть водород почти в 8 раз легче природного газа и в 13 раз легче воздуха.

Водород бесцветен, не имеет запаха, при этом он химически активен, горюч и взрывоопасен. Но его горение действительно не даёт выбросов загрязнителей атмосферы. Реакция горения водорода идёт с образованием воды, с выделением большого количества энергии E (тепла): 2 H2 + O2 => 2H2O + E. То есть это тепло — экологически чистая энергия.

Водород — самый распространённый элемент во Вселенной, на него приходится почти 89% общего числа её атомов и около 75% её массы, поскольку этот газ — основное вещество звёзд и топливо для их «работы». Отметим, что остальные 11% атомов Вселенной приходятся на гелий — собственно, продукт «горения» звёзд, и только 0,1% — на все остальные химические элементы

Однако в обитаемом и доступном нам мире водорода на порядки меньше. Например, в земной коре его содержание оценивается всего в 1% по массе и около 17% — по общему количеству атомов. В земной атмосфере водород также выглядит исчезающе малой величиной — 5∙10─5% (0,00005%) общего объёма атмосферы и 3,5∙10─6% (0,0000035%) её массы. При этом свободного водорода на Земле мы почти не видим. Слишком лёгкий элемент в атмосфере плохо удерживается земным притяжением, но охотно вступает в химические реакции, образуя разные соединения, в которых он в основном и присутствует в географической оболочке.

Самое распространённое соединение водорода — вода, а самый большой на Земле резервуар этого газа — Мировой океан, на который приходится 96% воды на планете. Объём и масса вод Мирового океана — огромные величины: более 1,3 млрд км3 и, соответственно, 1,3∙1018 т. На водород в массе воды приходится 11%, то есть, в океанической воде его содержится примерно 1,4∙1017 т, и ещё приблизительно 5,6∙1015 т — в остальных водах Земли. Это в совокупности очень немного относительно массы земной коры, составляющей 2,8∙1019 т, — примерно полпроцента.

Оценим это количество водорода в энергетических единицах, сопоставляя с потребностями человечества. Теплотворная способность данного газа — 3,6 кВт∙ч/м3, или 40 кВт∙ч/кг и 40 МВт∙ч/т. Это примерно в три раза выше, чем у природного газа. Иными словами, только в пресных водах Земли (это всего 4% от всей земной воды) содержится 2,24∙1017 МВт∙ч, или 2,24∙1011 ТВт∙ч потенциальной водородной энергии. Для сравнения, вся энергия, потребляемая человечеством в течение года, менее 2∙105 ТВт∙ч1 — в миллион раз меньше. И нужно «всего» 5 млрд тонн водорода в год, чтобы обеспечить энергией всё человечество на текущем уровне. При этом в пресной воде Земли его больше в 1 млн раз, а в океанической — в 25 млн раз.

1 По данным International Energy Agency.

Огромное по сравнению с нуждами мирового энергопотребления количество водорода в виде его соединений содержится в запасах угля, нефти и газа, собственно, и называемых углеводородным сырьём. Дать точную цифру мировых ресурсов ископаемых углеводородов невозможно, но на данный момент только разведанные запасы в совокупности превышают 1 трлн тонн, и водорода в них не менее 100 млрд тонн, при этом на Земле разведано далеко не всё и ресурсная база постоянно пополняется.

Иными словами, теоретически, если мы начнём использовать водород в качестве топлива для выработки тепловой и электрической энергии, извлекая его только из воды, нам хватит его как энергоносителя на десятки миллионов лет, то есть навсегда.

Желанный, но такой дорогой

Почему же до сих пор водород не стал энергоносителем номер один?

Два главных способа получения этого газа в настоящее время — конверсия углеводородного сырья и электролиз воды. Но извлечение водорода из его соединений означает разрыв химических связей между водородом и кислородом в случае воды или между углеродом, кислородом и водородом в случае углеводородов. И оба процесса сопряжены с очень большими затратами энергии, с дорогостоящим оборудованием и, заметим, с загрязнением окружающей среды.

В настоящее время в мире производится около 75 млн т водорода в год, и пока его производство растёт невысокими темпами — менее 2% в год. При этом из углеводородного сырья добывается более 90% всего производимого водорода, в том числе 70% — с помощью конверсии природного газа, самого доступного способа. В основе процесса — подвод к природному газу тепла (нагрев печи до 600—1000°С) и водяного пара в присутствии металлического катализатора — кобальта, никеля, железа. Это самый дешёвый, но экологически грязный способ, оставляющий большой углеродный след, то есть выбросы CO2 в атмосферу. Он описывается химическими реакциями:

CH4 + H2O = CO + 3H2

СО + H2O = CO2 + H2

На выходе, как можно видеть, — большое количество углекислого газа. Кроме того, при расчёте стоимости процесса надо учитывать не только затраты собственно на работу печи, но и на добычу и транспортировку газа. И если рассматривать водород как топливо, то дешевле и экологически чище просто добывать и сжигать природный газ.

Есть и другие способы углеводородной конверсии — например, газификация и пиролиз угля и даже получение водорода из биомассы, но углеродный след и высокие затраты присущи всем этим решениям.

Если слегка коснуться цифр, то стоимость производства водорода методами углеводородной конверсии оценивается от $2 за 1 кг. Один лишь расход метана на производство 1 кг водорода составляет 5 м3, а при угольной конверсии производство 1 кг водорода потребует более 6 кг угля. Цена, очевидно, высока, при этом использование водорода как энергоносителя с КПД, равным 100%, невозможно, и количество полученной энергии в данном случае надо делить примерно на два—три. Добавим ещё затраты на создание и поддержание инфраструктуры для транспортировки и хранения водорода и получим исключительно дорогое топливо, производство которого далеко не безупречно с экологической точки зрения.

Водород долгое время хранили в сжатом либо жидком виде. Жидкий водород требует специального «криогенного» хранения (то есть в теплоизолированных контейнерах) и особого обращения из-за опасности взрыва. На фото огромный сосуд с жидким водородом в экспериментальной вакуумной камере в Исследовательском центре Льюиса (теперь Исследовательский центр Джона Гленна — John Glenn Research Center, NASA), 1967 год. Фото: NASA/GRC/Paul Riedel, Lloyd Trunk/Wikimedia Commons/PD

рения. Остаётся единственный экологически чистый способ получения водорода — извлечение его из воды, которой на Земле намного больше, чем углеводородного сырья, и она, очевидно, доступнее. Самый распространённый способ получения водорода из воды — электролиз, то есть разложение воды под действием электрического тока:

2H2O = 2H2 + O2

Побочный продукт электролиза — только кислород, однако этот процесс исключительно энергоёмкий. Для получения 1 кг водорода (напоминаем, теплотворная способность такого количества газа при 100%-ном КПД составит около 40 кВт∙ч) нужно затратить 40—50 кВт∙ч электроэнергии. Таким образом, расход энергии оказывается больше (а с учётом реальной эффективности использования конечного продукта — минимум вдвое больше), чем энергия, полученная на выходе. Что касается денежного эквивалента, то затраты на производство водорода путём электролиза оцениваются в $3—7 за 1 кг, что существенно выше, чем при конверсии углеводородов. И электролизом воды получают лишь 2% производимого водорода.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Цифровая лихорадка Цифровая лихорадка

Наиболее интересные выступления из конференции CG Event

Популярная механика
«Пузырь доткомов 19 века»: как шотландец обманом собрал сотни тысяч фунтов на развитие вымышленной страны Пояис «Пузырь доткомов 19 века»: как шотландец обманом собрал сотни тысяч фунтов на развитие вымышленной страны Пояис

Как Грегор Макгрегор провозгласил себя правителем земли, которой не владел

VC.RU
Распад СССР: только факты Распад СССР: только факты

Распад СССР — историческая случайность или неизбежная катастрофа?

Дилетант
7 оригинальных комнатных растений для самых смелых цветоводов 7 оригинальных комнатных растений для самых смелых цветоводов

Для каждого из нас найдется цветок, подходящий по характеру и темпераменту

ТехИнсайдер
Бурлеск Самбурской Бурлеск Самбурской

Актриса, певица, дива, Самбурская, Настасья – все это о ней

Maxim
Валентина Титова. Понять и простить Валентина Титова. Понять и простить

Любовь — это служение, обожание, долг, долги плачу

Коллекция. Караван историй
Бегство наследника Бегство наследника

Алексей Петрович так боялся отца, что в итоге сбежал за границу

Дилетант
ЗОЖ вам! ЗОЖ вам!

То, что здоровая еда нужна и интересна только женщинам, – это стереотип

Домашний Очаг
Правильный развод: как составить брачный договор и есть ли ему альтернативы Правильный развод: как составить брачный договор и есть ли ему альтернативы

Какие правила нужно знать при его оформлении брачного договора?

Forbes
«Не мошенник, а фантазёр»: история афериста Коровко, ставшего прототипом для героя Ильфа и Петрова «Не мошенник, а фантазёр»: история афериста Коровко, ставшего прототипом для героя Ильфа и Петрова

Кто такой Константин Коровко и как он стал прообразом для героя Ильфа и Петрова

VC.RU
«Каждый негодяй должен быть принципиальным» «Каждый негодяй должен быть принципиальным»

Следователи, бандиты, цари, космонавты… Кого только не играл Фёдор Лавров

OK!
9 самых загадочных историй кораблекрушений 9 самых загадочных историй кораблекрушений

Для моряков и дайверов корабли — живые существа

Популярная механика
Тепло ли тебе, девица? Тепло ли тебе, девица?

Минималистичная квартира, “согретая” живыми материалами

AD
Азбука авангарда Азбука авангарда

Отечественные имена и понятия, которые повлияли на мировое искусство

Культура.РФ
Как научиться экономить и копить деньги: простые способы тратить меньше Как научиться экономить и копить деньги: простые способы тратить меньше

Наши советы помогут грамотно распределить семейный бюджет

Лиза
Темная материя может скрываться в сердце древних черных дыр Темная материя может скрываться в сердце древних черных дыр

Существует ли темная материя и если да, — то что это такое?

Популярная механика
GoPro, литий, зеленая экономика: пять перспективных новых акций на «СПБ Бирже» GoPro, литий, зеленая экономика: пять перспективных новых акций на «СПБ Бирже»

На бумаги каких пяти компаний стоит обратить внимание инвесторам?

Forbes
Только не бросай его Только не бросай его

Он тебе в принципе интересен, но... Можно ли полюбить спорт раз и навсегда?

Cosmopolitan
«Я впервые посчитала деньги после развода»: Агата Муцениеце упрекнула Прилучного «Я впервые посчитала деньги после развода»: Агата Муцениеце упрекнула Прилучного

Агата Муцениеце поиронизировала над бывшим избранником Павлом Прилучным

Cosmopolitan
«Железо» против четвертой промышленной революции «Железо» против четвертой промышленной революции

Роботы и 3D-принтеры — техника, в которой футуристы увидели базу Индустрии 4.0

Эксперт
Полеты на паутине и отстрел зомби: топ-7 игр, наполненных духом Рождества Полеты на паутине и отстрел зомби: топ-7 игр, наполненных духом Рождества

Подборка самых интересных релизов, чтобы ты не скучал на новогодних праздниках

Maxim
«Я вся, как наглухо застегнутая» «Я вся, как наглухо застегнутая»

Как Анна Франк была символом, а стала человеком

Weekend
5 действенных домашних упражнений для стройных ног и подтянутых ягодиц 5 действенных домашних упражнений для стройных ног и подтянутых ягодиц

Хочешь удивлять всех красивыми ногами?

VOICE
ДК Лурье ДК Лурье

Как историк Лев Лурье строит Петербург будущего

Собака.ru
Гид по секретным отношениям Гид по секретным отношениям

Адреналин, ложь во благо и искусные прикрытия

GQ
Археологи раскопали погребение знатной женщины с ребенком в скифской «Долине царей» Археологи раскопали погребение знатной женщины с ребенком в скифской «Долине царей»

Знатную женщину похоронили недалеко от «царского» кургана комплекса Чинге-Тэй-I

N+1
Внуки лунохода Внуки лунохода

Экскурсия в инженерный центр беспилотных технологий «Яндекса»

Популярная механика
Давние страницы: 5 увлекательных исторических книг Давние страницы: 5 увлекательных исторических книг

Подборка отличных исторических романов

Популярная механика
Взвешенный подход Взвешенный подход

Новые теоретические и практические основы похудения

Men’s Health
Древние жители Афонтовой горы оказались охотниками на зайцев Древние жители Афонтовой горы оказались охотниками на зайцев

Жители Афонтовой горы использовали разнообразное оружие в охоте

N+1
Открыть в приложении